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The energetic, steric, and bonding properties of molecules AX3 (A)N to Bi; X)H, F to I) are analyzed using
density functional theory. It is found that the “lone pair” in the initialD3h geometry is of central atom pz

character for the NX3 and AH3 molecules, whereas it possessesssymmetry in all other cases- here generally
with a strong delocalization toward the ligands. The stabilization of the distortedC3V geometry is due mainly
to covalency effects, whereas steric interaction forces according to the Gillespie-Nyholm model do not seem
to play a significant role. The application of the conventional vibronic pseudo Jahn-Teller coupling approach
(PJT), here for theD3hfC3V transition [A1′X(R2′′ + R1′)XA2′′ interaction], is an appropriate means for inorganic
chemists to predict trends for the extent of distortion and for the corresponding energy gain. The vibronic
coupling constants and the vibronic stabilization energies, which mainly determine the totalD3hfC3V energy
gain, vary according to the sequences F> H > Cl > Br > I (A: N to Bi), and N > P > As > Sb > Bi
(X: H,F), the dependence on A being only small or not present (X: Cl to I). Thus, the hardest molecules are
the most susceptible to vibronic coupling, the latter energy being approximately imaged by the hardness
differenceη(C3V) - η(D3h). A roughly inverse trend is observed if the extent of the angular distortionτR from
D3h to C3V symmetry is considered; here, the softest molecules such as Sb(Bi)Br3 exhibit the largest and NH3
the smallest deviations fromD3h geometry. The different sequences forτR are due to the strong influence of
the force constant, which represents theC3VfD3h restoring energy. It is remarkable that the vibronic coupling
energy is strongly correlated with the chemical hardnessη (an observable quantity), while the stabilization
energy for theD3hfC3V transition is not directly reflected byη, in contrast to what is generally called the
“principle of maximum hardness”.

I. Introduction

In this study we explore by means of density functional theory
(DFT) the stereochemical activity of a single lone pair in the
title series compounds and use these results to critically evaluate
the predictive power of the two models describing such
activities, the valence shell electron pair repulsion (VSEPR) and
the vibronic pseudo Jahn-Teller (PJT) coupling models.

The cations of the third to seventh main group occur not only
in the highest possible oxidation states but also in oxidation
states that are lower by 2 [for example In(III,I), Tl(III,I); Sn-
(IV,II), Pb(IV,II); Sb(V,III),Bi(V,III); etc.]. In a chemical
environment, the latter possess an ns2 (or in certain cases, see
below, an np2) configuration (n ) 2-6), which may lead to
electronic and stereochemical instability if np (ns) orbital
contributions are admixed, rendering directional properties to
the “lone pair”. It has been proposed1-3 that the electrostatically
most favorable distribution of all electron pairs in the valence
shell of a central atom dictates the molecular geometry (VSEPR
model). In many cases, however, solely the repulsive forces

between the ligator atoms seem to govern the geometry, the
lone pairs being “inert”, i.e. included in the spherically sym-
metric core.4 The pioneering work by Bader et al.,5 based on a
topological analysis of the Laplacian of the electron density,
gives a physical basis for the VSEPR model of molecular
geometry. Despite the availability of widespread structural and
spectroscopic results and theoretical6 studies, it is not clear up
to now, however, whether the forces leading to molecular
distortions (lone pair effect) are dominated by repulsive interac-
tions between valence and lone pair electron pairs, demanded
by the VSEPR model, or by the energy gain due to orbital
overlap effects as one distorts nuclear configurations from higher
to lower symmetry. We focus on systems with the coordination
number (CN) equal to 3 such as BiIII and the other trivalent
elements of the fifth main group, including relativistic correc-
tions into the calculations. The results are generally compared
with those for the analogous polyhedra of TlIII . The latter cation
possesses the same formal charge as BiIII and an electronic
configuration corresponding to that of BiIII without the lone pair,
hence lacking a possible stereochemical activity. We in par-
ticular analyze how the extent of the stereochemical effect and
the extent of the energetic stabilization vary, if the central ion
changes from NIII via PIII , AsIII , SbIII to BiIII and the ligand from
F- to I-, and finally to hydride. In a second contribution we
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will extend our investigation to complexes of lower and higher
coordination numbers. In contrast to the model case of CN)
3, these are positively (CN) 2) or negatively (CN) 4-6)
charged, however. Here DFT provides the possibility to
compensate the charge by introducing a polarizable solvent
environment, thus stabilizing the ionic species.

The purpose of this study is twofold. On one hand, we intend
to derive simple rules, which allow the chemist to predict
whether compounds will show a steric lone pair effect or not
and how large the distortion might be. On the other hand, we
want to demonstrate the significance of the vibronic coupling
model for the understanding of the energetic and stereochemical
stabilization of this kind of molecules and solids. Such concept
bears reality, because vibronic interactions connected with lone
pair cations such as BiIII are considered to give rise to other
interesting phenomena in materials science; thus, the mixed
valence oxide ceramics Bi0.6K0.4BiO2.93 and BaBi0.25Pb0.75O3,
for example, exhibit superconducting properties with critical
temperatures of≈30 K and ≈16 K, respectively.7 In future
studies we want to extend our investigations to solids, where
cooperative elastic and electronic interactions between neigh-
bored cationic centers and host lattice strains add to the local
lone pair effect, yielding rather complex situations in many
cases.

Predictions of the Gillespie-Nyholm Model. The geo-
metrical patterns due to lone pair activity are predicted and
interpreted within the VSEPR model developed by Sidgwick
and Powell,1 Gillespie and Nyholm,2 and others.3-5 This model
assumes that (i) the valence charge density is spatially localized
into pairs of electrons and (ii) the geometrical arrangement of
the ligands is that which maximizes the interpair separation and
minimizes the interpair repulsion, including both bonded and
lone pairs. The shape of the polyhedra predicted on this basis
for cations with a single lone pair is ofC3V (trigonal pyramid)
symmetry for the CN) 3, with the trigonal-planar (D3h)
coordination as the parent geometry of the highest possible
symmetry. While the predictions of the VSEPR model for the
CNs 2 to 5 are unambiguous, they become less definite for the
CN ) 6 and higher CNs. Electrostatic arguments suggest
polyhedra withC2V andC3V symmetry for the CN) 6, which
correspond to a pentagonal bipyramid with one missing ligand
in the equatorial plane and a monocapped octahedron, the lone
pair occupying the cap position, respectively. The experimental
finding is different, however. Either undistorted octahedra
occur, implying a spherical ns2 pair or a dynamic averaging
of equivalent distorted conformations,8 or a tetragonal
pyramid (C4V)9a is observed, resulting from the removal of
one ligand along a 4-fold axis of the octahedron. While
the Gillespie-Nyholm rules would derive the latter geom-
etry from the CN ) 5, a trigonal-bipyramid (D3h), there
is experimental evidence that the parent symmetry can beOh-
(CN ) 6) as well. We will discuss these items in a subsequent
paper.

Predictions by the Vibronic Coupling Model. One can
alternatively look at coordinated lone pair cations starting from
the highest possible geometry for the considered coordination
number, sayD3h (CN ) 3), and consider lower-symmetry
distortions along certain normal mode distortion coordinates with
the property that the ns2(1A1′) ground state and a neighbored
ns1p1 (1A2′′) excited state adopt the same symmetry and hence
may interact (pseudo Jahn-Teller effect, PJTE,10,11). Group
theory allows to select the vibronically active vibrationυ by
inspecting the direct product1A1′XυX1A2′′, which has to contain

the totally symmetric representation. The active mode isR2′′ in
this case, leading from theD3h into the distortedC3V molecular
geometry:

We want to emphasize at this stage that the vibronic model
does not introduce novel interactions between the atomic
fragments but merely represents a different kind of parametriza-
tion, which is more illustrative and comprehensive than
conventional concepts such as the electrostatic VSEPR model,
for example. The vibronic coupling effect can be looked at as
creating a “new covalency,”11b in addition to some smaller ionic
(crystal field) interactions, in the course of distortion. We will
discuss this matter in greater detail when we compare the various
energy parameters resulting from the vibronic approach, with
the electrostatic and covalency bond contributions, which
emerge from the DFT calculations for the D3hTC3v intercon-
version (see eq 9).

The PJT concept is imaged by the coupling matrix of eq 1,
the critical parameters being the1A2′′(ns1p1)-1A1′(ns2 or npz

2,
see below) separation∆ and the nondiagonal vibronic coupling
constanttR, which parametrizes the s-p mixing due to distor-
tions along the vibronically activeR2′′ mode (τR).

wheretR ) 〈Ψ(A1′)|δH/δτR |Ψ(A2′′)〉, Eg ) (1/2)KRτR
2, andEe

) (1/2)KR′τR
2 + ∆. Eg and Ea contain the restoring force

energies for the ground and the excited state respectively, which
favor the higher symmetry. Equation 2 gives solutions of the
matrix (eq 1); hereE+ and E- refer to the A1(1A2′′) and
A1(1A1′) states inC3V, after the vibronic interaction:

Figure 1 illustrates the three possible limiting approximations
for the strength of the PJT coupling by schematic potential curve
diagrams. Figure 1a refers to vanishing vibronic interaction (eq
2a), such as is the case for TlIII , and Figure 1b characterizes
the weak coupling case, leading to a flattening of theE-
potential curve (soft-mode behavior alongτR) by ns-npz mixing
(eq 2b) with an effective force constantKR

eff ) KR - 2tR2/
δEg,e. Only in the strong coupling case of Figure 1c, eq 2c, a
new minimum (E-<0) at a finite value of the nuclear displace-
ment parameterτR develops. The minimum position and the
energy gainE-

m in the latter case is given in eq 3.

The given expressions readily allow to calculate the vibronic

1A1′
1A2′′

[Eg - E tRτR
tRτR Ee - E] (1)

E()(1/2){Eg + Ee ( [δEg,e
2 + 4 (tRτR)2]1/2},

with δEg,e )∆ + (1/2)(KR′ - KR)τR
2 (2)

tR ) 0 E- ) (1/2)KRτR
2 (2a)

(tRτR)2,δEg,e
2/4 E- = (1/2)[KR - 2tR

2/δEg,e]τR
2 (2b)

tRτR . δEg,e/2 E- ≈ (1/2)KRτR
2 - tRτR (2c)

(tRτR)2 . δEg,e
2/4 τR

m = tR/KR (3)

tRτR . δEg,e/2 E-
m ≈ -(1/2)tRτR

m w tR ≈ -2E-
m/τR

m
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coupling parametertR from energy values and geometric
parameters available from experiment and the DFT calculations
(see below). Even in the strong coupling case, a system may
retain the higher parent symmetry [dynamic averaging between
the two equivalentC3V nuclear displacements (+τR) and (-τR)].
Usually, however, symmetry breaking due to external forces,
such as encountered as strains in crystals, occurs and leads to
a static distortion.

We should note here that matrix (1), and its more sophisti-
cated form (5a) as well, is restricted to linear vibronic coupling
terms and a two-level system (see section IV.1 and below). As
such it is valid, in a strict sense, only for small nuclear
displacements from the reference geometry, leading (by per-
turbational expansion up to second-order energy terms) to the
approximate solution (eq 2b); this kind of treatment became a
common procedure in the vibronic theory of stereochemistry
(see the overview in ref 11b). Our analysis, however, is based
on exactsolutions of matrices (1) and (5), allowing to consider
also larger distortions from the parent geometry when assuming
that the linear coupling term dominates the higher order terms.

As has been demonstrated by the analysis of a large number
of structural and spectroscopic data,4 the more sophisticated
symmetry concept of the PJTE model is superior to that of the
straightforwardly applicable VSEPR model, though admittedly
more complex. Whereas the concept of the PJTE predicts the
symmetry aspects of the lone pair effect correctly in most cases,
the model does not specify the alterations of the bond properties
during the symmetry change, which are energetically in its
essential part represented by the vibronically interacting HOMO
and LUMO (see section III). However, the MO schemes derived
from DFT allow to analyze the central ion and ligand contribu-
tions in the respective molecular orbitals (MOs) and also give
detailed information as to whether the energy gain by the
transition from the “symmetric” to the “distorted” geometry is
caused exclusively by the stabilization of the “lone pair” HOMO
and lower-lying MOs of the same symmetry or if other MOs
are involved as well. A correct vibronic interaction treatment
should take into account the presence of further excited A2′′
states, which may couple with the A1′ ground state as well.
Though the separation energy∆ is rather large in such cases,
the coupling constantstR may also be considerably larger and

produce additional distinct energetic stabilization effects. This
point will be considered in section IV and the appendix.

In this and the following contribution we intend to simulate
the stereochemical lone pair effect by DFT calculations, in order
to gain some insight about the accompanying energy changes.
Our main intention is to obtain information about the depen-
dence of the geometrical and electronic instability on the nature
of the ligand, the position of the central ion in the periodic table,
and the coordination number of the considered polyhedra. The
authors are aware that the calculational results have to be
considered with precaution, avoiding an overinterpretation with
respect to the quantitative relevance. Nevertheless, the fast
availability of data makes DFT a valuable tool for the chemist
to get a deeper-going understanding of the lone pair phenomenon
- quod est demonstrandum.

II. Computational Details
Spin-restricted DFT calculations have been carried out with

the Amsterdam density functional (ADF) program package
(versions ADF.2.3 and, recently ADF1999).12-15 The Vosko-
Wilk-Nusair parametrization16 of the electron gas data has been
used for the exchange correlation energy and potential. Density
gradient corrections were included for the exchange17 and for
the correlation.18 To check the reliability of the basis sets for
Bi and Tl supplied by the ADF 2.3 and ADF1999 packages
and their effect on the Kohn-Sham orbital energies, we have
performed calculations on the BiF3 cluster using basis sets with
improved quality from double-ú to triple-ú and accounting for
relativistic effects (scalar and spin-orbit coupling) and inner
shell orbitals (4f145s2p6d10); subsequently the optimized geom-
etries and bond energy changes during theD3hfC3V transition
were compared with results from MP2 calculations.6 Best
agreement between calculated geometrical parameters and
energies for BiF3 and literature data is achieved using triple-ú
Slater type orbitals (STOs) extended by one polarization function
(TZP) for Bi, F, and O and frozen core 1s orbitals of F and O.
In calculating the energies, separateatomicfragments have been
chosen as the reference, if not stated otherwise. Relativistic
effects were included using a perturbative quasirelativistic
(Pauli) Hamiltonian and, alternatively, a variational zero order
regular approximation (ZORA), with and without spin-orbit
coupling.

Figure 1. Potential curves of the interacting ground (6s2 or 6pz
2) and excited (6s1pz

1) states of, for example, octahedrally coordinated BiIII by
vibronic PJT interaction along theR2′′(τR) distortion coordinate (schematic). They illustrate the cases of vanishing [a; eq 2a], weak [b; eq 2b], and
strong coupling [c; eq 2c].
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DFT orbitals and their energies have been calculated by
solving the Kohn-Sham equations, where both electronic
exchange and correlation were taken into account. As such, these
orbitals are superior to those calculated using Hartree-Fock
theory, in which electronic exchange (Fermi hole) is accounted
for accurately, but electronic correlation (the correlation hole)
is completely neglected. As has been recently shown, Kohn-
Sham orbitals are chemically significant19 and can be used as
valuable substitute for MOs resulting from extended Hu¨ckel
calculations.20 Kohn-Sham equations and Kohn-Sham orbitals,
which we will simply call MOs in the following, are very useful
in the sense that they image the total energy and its components,
such as Coulomb attractive and repulsive forces, projected onto
single orbital configurations.

The total bonding energies (Et) have been analyzed using the
transition state method of Ziegler and Rauk.21 In this method
Et is decomposed into three terms. The first term is the
electrostatic energy, calculated for theunrelaxeddensities of
the atomic fragments (Eel). It consists of repulsive terms due to
nuclear-nuclear and electron-electron interactions, as well as
attractive interactions between the electrons on a given fragment
and the nuclei of the other fragments. The second contribution
stems from the overlap between closed shells of different atoms,
again for the unrelaxed situation. This gives rise to a Pauli
exchange repulsive term (EP). Finally, the change in electronic
density of the starting atomic fragments due to charge transfer
(CT) between singly or doubly occupied to singly occupied and
empty orbitals is considered. This is a bonding contribution and
is referred to as the orbital interaction energy (Eorb). The three
energy contributions toEt and Et itself are of different
magnitudes, if not the atomic components of the respective
compound or polyhedron but ionic fragments (a possibly more
suitable choice for clusters with higher ionicity) are chosen.
However, the difference between the bonding energies (δEt) of
the same AX3 molecule inD3h andC3V is independent of this
choice. Because molecules dissociate into neutral atoms, rather
than into charged ions, the total bonding energy as obtained
using atomic fragments should be used for comparison with
the bond dissociation energy.

The sum ofEel andEP, pertaining to the nonrelaxed fragments,
is sometimes considered to be the “steric interaction energy”
(Eo).21 However, following the arguments in a recent paper by
Diefenbach et al.,22 we prefer to discuss the three energy
components ofEt separately, hereby looking atEel andEorb as
representing the major part of the ionic and covalent bond
contributions, respectively. We further propose to correlateEP

with the steric interaction underlying the VSEPR model.EP is
large at small interatomic distances and hence expected to
dominate the electron pair repulsion energy. Though electrostatic
(Coulomb) interactions are also involved in the steric interaction,
|Eel| (at interatomic distances close to the equilibrium ones) is
always much smaller than|EP|, at least in the cases considered
here, thus supporting to considerEP as approximately represent-
ing the VSEPR energy. While the VSEPR model is a pragmatic
concept lacking an exact physical basis, the Pauli repulsion term
has the advantage to be a well defined and calculable quantity.
We will, referring to the arguments in this discussion, use EP

in the following as the “steric repulsion”, which broadly images
the VSEPR energy.

We use a Mulliken population analysis (MPA) in order to
specify the percentage of a given atomic orbital in the MO and
to calculate effective atomic charges. Because in MPA the
overlap charge is divided half between the contributing orbitals,
in some cases, such as encountered for antibonding MO’s, a

negative percentage in a given MO may result. It is well-known,
that the charges obtained by projecting on local orbitals are
notoriously sensitive to the choice of basis functions. Thus,
Mulliken charges will be used only in a comparative way.

Furthermore, we have calculated the chemical potentialµ and
the hardnessη, which are important energy quantities, when
imaging the total energy. They are deduced from the first and
second derivative of the total energy with respect to the number
of electrons (N) in the constant potentialV of the nuclear
subsystem, referred to as an “external” potential [eq 4a].23,24

However, as has been discussed elsewhere,24 µ and η are
discontinuous functions for systems with a finite HOMO-
LUMO separation, but with a much smaller discontinuity gap
in the latter case. Explicitely, we have derivedµ andη using
eq 4b, where theε are Kohn-Sham orbital energies. They are
correlated with the total energy change in dependence on the
number of electrons (n) in the HOMO or LUMO byε ) (∂Et/
∂n)V andU ) (∂ε/∂n)V, whereU has the meaning of an effective
interelectronic repulsion energy, related to the one used in the
Hubbard model. The thus defined quantitiesµ and η ap-
proximately equal the (negative) electronegativityø and the
chemical hardness, respectively, generally applied in chemistry
and based on the ionization energy (I) and the electron affinity
(A) [eq 4c].24 µ andη are calculated by removing (adding) only
fractional electron density (here in steps(0.05 e) from (to) the
system according to eq 4a. They are considered to yield more
accurate values than those values based on an integer number
of electrons [eq 4c] and not derived from energy values in the
close vicinity of the neutral molecule.

We mention finally that we have used floating basis functions
in the DFT calculations, meaning that the respective electron
densities follow the nuclear displacement during the symmetry
change. This approach has the advantage with respect to that
based on space-fixed atomic orbitals that only the physically
meaningful bonding properties, namely the electronic rearrange-
ment and the corresponding change of overlap, are considered,
as has been pointed out by Bersuker et al.25

III. Results and Discussion

1. BiF3 and BiH3. We start to consider bismuth compounds
for three reasons. First the stereochemistry of BiIII in oxidic
solids is governed by static lone pair distortions,9 second we
were interested in exploring the importance of relativistic
corrections for the lone pair effect, and third the lone pair effect
might be significant for the superconducting properties of certain
BiIII oxide ceramics.7

The DFT geometry optimization for BiF3 shows that the
trigonal pyramidal geometry (C3V) is stabilized byδEt ) -1.16
eV (relativistic calculation) with respect to the planar (D3h)
coordination. Geometrical parameters and bonding energy
changes are listed in Table 1. The Bi-F bond length decreases
by =0.06 Å, proceding from theD3h to theC3V coordination,
reflecting a strengthening of the Bi-F bonds in the distorted
geometry. This observation is in accord with the expectation,
because the F- ligands will be repelled by an electron pair with
pure s character, in difference to the repulsive force of a lone

µ ) (∂Et/∂N)v η ) (1/2)(∂2Et/∂N2)v (4a)

µ ) (1/2)[(εLUMO + εHOMO) - (UHOMO - ULUMO)] (4b)

η ) (1/2)[(εLUMO - εHOMO) + (UHOMO + ULUMO)]

µ ≈ -ø ) -(I + A)/2 η ≈ (I-A)/2 (4c)
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pair with directional pz character away from the ligands. The
Bi-F spacing inC3V is slightly lower than the one estimated
from reported ionic radii (=2.1 Å),26 whereas it is close to it in
the D3h complex. The neglect of relativistic corrections leads
to a larger energy gainδEt ) -1.73 eV, because such correction
contracts in particular the 6s electron clouds, thus enhancing
the A1′(6s2)-A2′′(6s16pz

1) energy separation∆ [eq 1] and
reducing the extent of the lone pair effect. The inclusion of
spin-orbit coupling yields only negligibly small changes of the
Bi-F bonding energy, as expected for an “s2” ground state.
DFT calculations on TlF3 yield the minimum at theD3h

geometry. The effective charge of BiIII is about 1.8, indicating
significant ionic bond contributions, and similar to that of TlIII

in TlF3 (1.7). BiF3 and TlF3 are known as stable solids with
interconnected polyhedra but are not observed as isolated
species. The CN of BiIII in the former solid crystallizing in the
YF3 structure is 8(+1).

The MO energies and their atomic orbital (AO) 6s,p(Bi)
compositions for theD3h geometry are depicted in Figure 2.
The 6s(BiIII ) electron density distributes over the 5a1′ and 6a1′
MOs. Due to the energetic position of the fluorine 2p AOs being
considerably higher than that of 6s, the HOMO 6a1′ is mainly
ligand determined. In contrast, the antibonding 4a2′′ LUMO is
of dominating 6pz character. A similar MO scheme is calculated
for TlF3, with 6a1′ being the LUMO in this case. In difference
to BiF3, the magnitudes of the metal 6s contributions to 5a1′
and 6a1′ are roughly reverse with 45% and 67%, respectively,
due to the much higher position of the 6s AO of Tl in
comparison to that of Bi. The calculated Tl-F bond length
(Table 1) is somewhat larger than the one expected from
reported ionic radii (=1.95 Å25). Only two MOs of BiF3 are
strongly energetically affected by the symmetry decrease from
D3h to C3V (Figure 2), namely 6a1′ and 4a2′′. In accord with the
one-electron aspect of the introduced vibronic coupling model
(a1′XR2′′Xa2′′ interaction), these are the MOs originating from
the 6s and 6pz BiIII orbitals, which mix in the lower symmetry,
yielding 9a1 and 10a1. The antibonding “lone pair” 9a1 MO is
strongly stabilized, adopting 1/3 6pz character by the mixing

process. The energy difference between the many elec-
tron ground state A1′[(6a1′)2] and the first excited state
A2′′[(6a1′)1(4a2′′)1], which are involved in the A1′X R2′′ X A2′′
PJT interaction, isδ = 3 eV (Table 1). Without stressing the
quantitative relevance of Kohn-Sham MO diagrams too much,
it is quite clear, though, that the lone pair (9a1) is predominantly
localized on the ligand (Figure 2a) and not nonbonding with
respect to the central ion, as is frequently claimed in the
literature.

We deduce from the positive steric repulsion term (δEP) and
the negative covalent (δEorb) and ionic (δEel) energy contribu-
tions to the total energy changeδEt during the D3hfC3V
transition for BiF3 (Table 1), the latter two overcompensating
the former, that it is the stronger bonds that stabilize theC3V
with respect to theD3h geometry. If one roughly correlatesδEP

with the energy contribution, which is supposed to be the driving
force for the symmetry change in the VSEPR model (see section
II), minimum steric repulsion between the strongly delocalized
6s/6p lone pair (Figure 2a) and the Bi-F bonding electron pairs
does not occur in the optimizedC3V geometry, in contrast to
the expectation assuming the validity of the VSEPR concept.
Table 1 gives also the contributions toδEorb, which stem from
the energetic changes of the a1′, a2′′ to the a1 MOs and of the
e′,e′′ to the e MOs, respectively, during theD3hfC3V transition.
It is quite clear from these numbers thatδEorb(a1) controlsδEt

in the case of BiF3. More specifically, the Kohn-Sham MO
scheme (Figure 2, Table 1) gives evidence thatδEt (= -1.2
eV) is predominantly determined by the energetic stabilization
of the 6a1′ MO (2xδER1′ ) -1.6 eV). Calculations with ionic
fragments, namely Bi3+ and F- as the reference instead of Bi0

and F0, lead to essentially the same conclusions, though the
magnitudes of the various energy contributions toδEt change
significantly. We have listed these values as well, because the
effective charges of the metal ion in BiF3 (and SbF3, AsF3) are
the highest of all investigated molecules- more than intermedi-
ate between “Bi0” and “Bi3+” (Table 1).

We further note that, when calculating the vibrational energies

TABLE 1: Calculated Energies [δEt, δEP, δEel, δEorb and Its Components from the a1(a1′,a2′′) and e(e′,e′′) MOs, δ - (A2′′-A1′)
Separation, in eV] and Geometrical Parameters (Bond LengthsR in Å and F(H)-A-F(H) Angles r in Degrees with the
Experimental Valuesa in Parentheses) for Molecules AF3 and AH3 (AIII : N,P,As,Sb,Bi) and TlF3 for Comparing Purposesb

δEt δEP δEel δEorb
c δEorb(a1) δEorb(e) δ R(D3h) R(C3V) R(C3V) q(D3h) q(C3V) δEa2′′(%A) δEa1′(%A)

NF3 -3.46 -10.63 2.45 4.73 -5.61 10.25 1.10d 1.36 1.40(1.37) 101.9(102.1) 1.10 0.87-3.9(67)d 2.0(42)
-3.45 -4.87 3.59 -2.18 -1.66 -0.64

PF3 -2.72 12.67 -4.08 -11.31 -11.28 -0.02 1.78 1.73 1.63(1.56) 97.3(97.7) 1.43 1.44 5.5(79)-1.4(40)
-2.72 6.46 -3.30 -5.88 -5.74 -0.11

AsF3 -2.04 9.88 -3.42 -8.51 -8.73 0.25 2.23 1.84 1.75(1.70) 96.5(95.8) 1.69 1.82 4.6(79)-1.2(30)
-1.96 5.16 -2.85 -4.27 -4.04 -0.19

SbF3 -1.66 6.58 -2.40 -5.84 -6.61 0.81 2.46 2.02 1.94(1.88) 95.8(95.0) 1.72 1.86 3.8(83)-1.1(34)
-1.67 3.61 -1.77 -3.51 -3.40 -0.08

BiF3 -1.16 4.85 -1.81 -4.20 -5.50 1.32 3.03 2.10 2.04(1.98) 94.3(96.5) 1.77 1.84 3.2(84)-0.8(19)
[-1.02] [-0.02] [-0.02] [-0.98] [-4.28] [3.24]
-1.16 2.79 -0.90 -3.05 -2.79 -0.24

TlF3 2.03 120 1.66 (96) (67)

NH3 -0.23 -2.97 -0.02 2.76 -1.16 3.95 6.51 1.00 1.02(1.01) 105.8(106.7)-0.09 -0.30 -0.9(100) -0.2(0)
PH3 -1.48 -3.82 0.36 1.97 -4.72 6.67 4.06 1.40 1.44(1.42) 92.5(93.3) 0.09 0.10-1.9(94) 0.8(0)
AsH3 -1.83 -5.27 0.96 2.49 -5.03 7.51 3.43 1.47 1.53(1.51) 90.7(92.0) 0.50 0.43-2.1(94) 1.1(0)
SbH3 -1.98 -4.43 1.16 1.28 -5.33 6.61 2.47 1.65 1.72(1.69) 90.7(91.5) 0.47 0.72-2.1(95) 1.6(10)
BiH3

c -2.70 -6.62 1.80 2.12 -5.89 8.00 1.40 1.72 1.82(1.81) 87.0(-) 0.34 0.70 -2.7(96) 2.3(4)
[-2.55] [-0.35] [-0.08] [-2.11] [-8.11] [6.00]

a Experimental values ofRandR are taken from ref 6 and the references therein.b The effective chargesq of AIII , the metal ns and np contributions
(in % electron density, in parentheses) to the a1′ and a2′′ HOMOs and LUMOs, and their energy changes during theD3hfC3V transition (δEa2′′,
δEa1′) are also listed. The energies listed for the fluorides in the second line are those with respect to the ionic fragments A3+ and F- as the
reference. For BiF3 and BiH3, the angular energy changes forD3hfC3V, if the bond length is kept constant at R(D3h), are also given (in brackets);
here the energies of the radial changes inC3V according to R(D3h)fR(C3V) are obtained by subtracting the angular energies from those respresenting
the total process.c The contributionsδEorb(a2) from the (nonbonding) a2(a2′) MO to δEorb are very small or vanishing.d Here the HOMO is of a2′′
symmetry.
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of BiF3 in D3h in comparison to those of TlF3 (see Table 4), the
R2′′ vibration possesses a “negative” enegy (imaginary fre-
quency) for BiF3, thus giving direct evidence for the geometric
instability of theD3h structure with respect toC3V.

If a ligand is chosen which lacksπ-bonding abilities, a new
feature comes into play. The MO scheme calculated for such a
case, namely BiH3, is depicted in Figure 3 (see the intermediate
section- D3h, C3V). Because the 3a2′′ MO originating from 6pz
is nonbonding inD3h, it is located energetically below the
σ-antibonding 5a1′ level. Thus we have a reverse situation as
compared to BiF3 (Figure 2), with a metal (6pz)2 based HOMO
(Figure 3a) and a LUMO 5a1′, which is nearly completely

ligand-centered. The A1′ ground state originates from (3a2′′)2,
and the first excited-state A2′′ stems from (3a2′′)1(5a1′)1. Also
in this case, significant energy changes, which involve the 3a2′′
and 5a1′ MOs, arise when lowering the symmetry fromD3h to
C3V. They are accompanied by an admixture of about 20% metal
6s character and a large increase of the ligand contributions to
the HOMO (Figure 3a: 7a1), in which the lone pair resides.
However, additional very distinct positive energy shifts of the
e′ MOs, in particular for the occupied 4e′, occur. This result is
reflected by theδEorb(a1) andδEorb(e) contributions, from which
the latter is strongly positive, makingδEorb also positive (Table
1).

Figure 2. MO scheme of BiF3 for DFT optimizedD3h andC3V geometries with the 6s and 6p (in parentheses) metal contributions (%) indicated
(left). The symmetry-adapted LCAOs inD3h originating from the ligand 2s and 2p orbitals are a1′,e′(σ) and a1′(σ); 2xe′(σ,π in plane); a2′′(π out-
of-plane); a2′, e′′ (nonbonding). The metal 6s and 6p AO’s transform as a1′(σ) and a2′′(π out-of-plane), e′(σ,π in-plane). The low lying 4a1′ and 4e′

MOs at= -28 eV are nearly nonbonding with respect to the ligand 2s orbitals and not drawn. The approximate energies of the parent Bi(6s,6p)
and ligand F(2s,2p) orbitals for effective charges of Bi and F inD3h (Table 1) were calculated making use of the Kohn-Sham orbital energies and
eigenfuctions. Figure 2a illustrates the wave function (ψ) underlying the “lone pair” HOMO of BiF3 in D3h (above) andC3V (below), predominantly
delocalized toward the ligand (right). The contour plot diagram is constructed for(0.06 values ofψ. Small 5d contributions from the Bi core are
also seen.

Figure 3. MO scheme of BiH3 for DFT optimizedD3h andC3V geometries, with the metal 6s and 6p (in parentheses) contributions (%) indicated
(left). The symmetry-adapted LCAOs inD3h stemming from the ligand 1s orbitals are a1′(σ) and e′(σ), while the metal 6s and 6p orbitals transform
as a1′(σ), e′(σ) and a2′′(nonbonding). The energies of the parent metal Bi(6s,6p) and H(1s) ligand orbitals for the Bi and H effective charges inD3h

(Table 1) were estimated making use of the Kohn-Sham orbital energies and eigenfuctions. Additionally, the MO splittings by spin-orbit coupling
(symmetry notations according to theD3h* and C3V* double groups) are shown. Figure 3a illustrates the wave function (ψ) underlying the “lone
pair” HOMO of BiH3 in D3h (above) andC3V (below). The contour plot diagram is constructed for(0.06 values ofψ. Small 5d contributions from
the Bi core are also seen.
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More insight into the bonding situation for BiF3 and BiH3 is
gained if one separates the energy effects into the radial and
angular components (Table 1). WhileδEP andδEel result nearly
exclusively from the bond length variation, the covalent bond
energiesδEorb and δEorb(a1), δEorb(e) are influenced by both
radial and angular changes in a rather complex manner.
δEorb(e) possesses positive angular components, due to the loss
of σ overlap for the 6px,y orbitals by the geometry change, which
is partly compensated byπ-bonding in the case of BiF3.
δEorb(a1) [angular] has a large negative energy for BiF3 and
BiH3, indicating that the stabilization energy of the MOs
involved in the D3h f C3V vibronic coupling process is of
dominant importance. The energy stabilization is enlarged in
the case of BiF3 and reduced for BiH3 by the radial effect
(δEorb(a1) [radial], δEorb(e) [radial]< 0 and> 0, respectively;
see Table 1). It is finally interesting to note that, when adding
up the various energy contributions,δEt turns out to be an
angular energy in very good approximation.

After all, the changes of the bonding parameters during the
D3hfC3V transition calculated for BiH3 arereVerseto those for
BiF3. The steric repulsionδEP is negative for BiH3 with a “pz

2”
groundstate (dR > 0) and positive for BiF3 (“s2” ground state;
dR < 0) and predominantly caused by the radial bond length
variationdR (δEP[angular] is very small).Apparently, it is not
the forces underlying the VSEPR model, eVen in the case of
BiH3, which stabilize the distorted geometry but the improVed
oVerlap particularly within the HOMO.The total covalent bond
energy changesδEorb are positive and negative for BiH3 and
BiF3, respectively, and are sensitive to both the angular and
radial geometry variation.

BiH3 is known as gaseous compound, which has not been
structurally characterized, however. The DFT calculations for
TlH3 yielded a positive energyEt. δEt for BiH3 is calculated to
be much larger when accounting for scalar relativistic effects
[-2.70 eV (Pauli) or-2.64 eV(ZORA)] as compared to the
nonrelativistic result [-1.77 eV], just opposite to the BiF3 case.
This is readily explained by the particularly distinct relativistic
contraction of the 6s orbital, which reduces considerably the
6s-6pz separation energy. Whereas the relativistic contraction
is more pronounced for BiH3 than for BiF3, the additional
consideration of spin-orbit coupling yields again only negligible
energy changes (δEt ) -2.59 eV, ZORA calculation), though
the spin-orbit coupling constant for Bi3+ is rather large (0.8
eV). Apparently the orbital momentum of the 6p orbitals in BiH3

is largely suppressed, because the total bonding energy clearly
dominates the spin-orbit coupling effect, in accordance with
the Van-Vleck theorem. The effect of the spin-orbit interaction
is illustrated by the orbital energy diagram in Figure 3,
employingD3h* and C3V* double group symmetries.

2. AF3 and AH3 Molecules (AIII ) N, P, As, Sb).In Table
1 we have listed the calculated energy and geometrical
parameters for the fluorides and hydrides of the fifth main group
elements from N to Bi. The comparison of the bond lengths
and angles with experimental structural data yields generally a
rather good agreement for the bond angles, while the calculated
A-X spacings are somewhat larger than the reported ones,
particularly in the case of the fluorides. As expected, the DFT
results of the AH3 molecules resemble those of BiH3, with a
HOMO corresponding to a nonbonding npz electron pair [(a2′′)2]
and a LUMO, which is predominantly or completely ligand
centered. Again, the covalent bond energyδEorb is positive due
to the largeδEorb(e) contribution, which indicates a significant
destabilization of the e MOs originating from the AIII npx,y

orbitals during the transition fromD3h to C3V, as discussed for

BiH3 already. The driving forces for the symmetry break are
the steric repulsion energy due to the widening of the AH bond
lengths on one hand and the contribution toδEorb stemming
from the a1 MOs on the other, as will be further discussed in
some detail later.

The fluorides AF3 behave similar to BiF3 in possessing a
strongly delocalized HOMO (a1′) and a metal-centered LUMO
(a2′′), though the central atom character of the HOMO is larger
(Table 1). An exception is NF3, where a reverse MO sequence
is found, with the lone pair residing predominantly in the a2′′
MO, as was known before.6 The reason can be taken readily
from the MO scheme of NF3 (Figure 4) in comparison to those
of the other fluorides, which resemble that of BiF3 (Figure 2).
The σ- and π-antibonding effects of the HOMO and LUMO,
as measured by the energy of these MOs with respect to the
atomic 2p(F) and npz(A) AOs, respectively, both increase
steadily from BiF3 to PF3, theσ effect being much more distinct,
however, as expected. Proceding from PF3 to NF3 a further steep
increase occurs, leading to an “overtaking” of the a1′ HOMO
by the a2′′ LUMO. This phenomenon is nicely imaged by the
LUMO-HOMO separationsδ′ or the corresponding many-
electron termδ [Table 1- analogous to∆ in matrix (1), see
section IV]. δ′ (a1′ being the reference) decreases from BiF3-
(=2.4 eV) to PF3 (=1.5 eV), becoming negative in the case of
NF3 (= -0.8 eV). The reverse trend is observed in the MH3

series: δ′ (a2′′ being the reference), which measures solely the
σ-antibonding character of the LUMO in this case, because the
lone pair is nonbonding, increases from Bi to N, with larger
jumps from Bi to Sb, and particularly from P to N. The
comparatively largeδ′ and δ changes from BiF(H)3 to SbF-
(H)3 are due to relativistic effects; the shrinking of the 6s orbital
reduces the extent ofσ-antibonding of the a1′ HOMO(LUMO),
thus enhancing (reducing)δ, δ′ particularly for BiIII . The singular
position of nitrogen in the series from BiIII to NIII is clearly due
to the drastically enhanced covalency of the N-F(H) bond (see
Appendix). This is indeed reflected by an increase of the
negativeEorb contribution toEt in D3h by =18(20) eV, proceding
from PIII to NIII . In comparison, the corresponding value for
the range from BiIII to PIII is only =13 (11) eV. The fluorides
of PIII , AsIII , and SbIII possess, similar to BiF3, negativeδEorb

andδEel energies, indicating a strengthening of both the covalent
and ionic central atom-ligand interactions inC3V. Here the large

Figure 4. MO scheme of NF3 for DFT optimized D3h and C3V
geometries. Energy levels for theN(2s,2p) andF(2p) atomic orbitals
were calculated making use of the Kohn-Sham orbital energies and
eigenfuctions.
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negativeδEorb(a1) energy controls the total energy gainδEt.
δEorb(e) is positive and rather small, because the loss of
σ-overlap for the px,y orbitals by the symmetry reduction from
D3h to C3V is almost compensated by the shrinking of the M-F
bond by 0.08(2) Å (Table 1). NF3, with an effective charge of
N rather near to the atomic fragment reference, behaves as the
hydrides in that repect; the increase of the bond length induces
a considerable destabilization of the e-MOs as indicated by a
strongly positive δEorb(e) energy, which compensates the
negativeδEP contribution (see the discussion of BiH3 in section
III.1). Though the energy changesδEP, δEel, δEorb, δEorb(a1),
andδEorb(e) are considerably different, using ionic fragments
M3+ and F- as the reference (in particular in the case of NF3),
the general conclusion remains. In the case of a (a2′′2), ground
stateδEP andδEorb(a1) determine the sign ofδEt, while for a
(a1′2) ground state it isδEorb(a1) together with the ionicδEel

contribution, which makesδEt negative.
It is tempting to find a correlation between the electronic

properties and the base character of the molecules under
consideration. We propose that the donor properties are the more
distinct, the more pz character the lone pair possesses, because
the directional property of this orbital is expected to control
the availability of the lone pair for an overlap with an acidic
reactant. The experimental proton affinitiesEa, deduced from
pulsed high-temperature mass spectrometry,27 and the results
of DFT calculations for the gas-phase reaction

show indeed, that such a simple concept might be valid (Table
2). Two different types of calculations have been performed.
When evaluatingEa

o, the equilibrium geometries resulting from
geometry optimizations of the free AX3 molecules have been
fixed, adjusting only the “A-H+” bond length.Ea

o may be
considered to directly probe the availability of the lone pair.Ea

is the proton affinity with the fully optimized AX3H+ cation as
the final state. In all cases, the energy minima occur atTd(AH4

+)
andC3V(AF3H+). The calculated proton affinities are in close
agreement with available experimental data and indeed follow
nicely the pz percentage of the lone pair (Table 2). The weaker
base properties of NF3, as compared to PF3, could be caused
by the very large HOMO stabilizationδER2′′ (Table 1) of the
former molecule when lowering the symmetry fromD3h to C3V,
thus leading to a shrinking of the lone pair and to less
pronounced donor properties.

It is not possible at the present stage of discussion to find a
simple correlation between the energy stabilizationδEt and the

geometrical changes, namely the angular and bond length
variations, during theD3hfC3V transition, which is based on a
nonsophisticated and easily accessible concept. Thus, while in
the fluoride series the stabilization energies|δEt| decrease with
increasing deviations from the planar geometry, the opposite is
the case for the hydrides. We will show in section IV that the
vibronic coupling model is able to rationalize even such
controversial behavior utilizing involved vibronic coupling and
force constants.

3. AX3 Molecules (AIII : N to Bi; X -I : Cl, Br, I). Table 3
summarizes the calculated energy and geometrical parameters
for the chlorides, bromides, and iodides, which may be readily
compared with the analogous properties of the fluorides and
hydrides (Table 1). The derived bond angles are mostly very
close to the experimental ones, whereas the calculated M-X
spacings are generally larger than those from experiment by
about 0.06 Å, but without inconsistencies in the trends. An
interesting, but not unexpected observation is that NCl3 and NBr3
have a A1′ (a2′′2) ground state as NF3, with a decreasing
energetic distanceδ to the excited A2′′ (a2′′1a1′1) state, however,
proceding from F- to Br-. In the case of NI3, the HOMO-
LUMO separation is nearly vanishing. Here, an A2′′(a1′1a2′′1)
ground state is calculated inD3h, with very close-lying excited
A1′(a1′2) and A1′(a2′′2) states in energetic distances of≈0.1 eV
and≈0.4 eV, respectively. In view of this, a multiconfiguration
SCF treatment would be the proper calculational choice for NI3.
In difference to the hydrides and NF3 (Table 1), it is solely the
strongly negative steric repulsion, due to the extension of the
N-Br(Cl) bond length (for example NBr3: δEp[radial] )
-11.97 eV), which stabilizes the distorted geometry of the
molecules NX3 (X)Cl,Br). Nevertheless, the HOMO stabiliza-
tion energyδEa2′′ is distinctly negative in these cases, even
thoughδEorb(a1) is slightly positive or vanishing (Table 3). We
will discuss this point in greater detail in the next section. The
molecules AX3, with A: P to Bi and X: Cl, Br, I, possess
energetic properties analogous to the corresponding fluorides
with the same A1′(a1′2) ground states (δEP > 0; δEorb, δEel <
0). Looking at the angular and radial changes separately, as has
been done for BiH3 and BiF3 (section III.1; Table 1), we note
an analogous behavior;δEP andδEel are sensitive to the bond
length variation nearly exclusively, whereas theδEorb energies
and their a1 and e components reflect both the angular and radial
changes (model calculations for NBr3 and PCl3).

In Table 4 we have listed the ground-state vibrational energies
calculated atD3h andC3V stationary points with the bond lengths
and bond angles deduced from the geometry optimization (Table
3), including also the data for the fluorides and hydrides (Table
1). As follows from the positive vibrational energies, absolute
minima at C3V geometries result for all molecules under
consideration. In general there is reasonable agreement between
experimental and DFT vibrational energies, the calculated values
for the halides being lower than the experimental energies. This
is the opposite to the results of Hartree-Fock and MP2 methods
which overestimate the vibrational energy.D3h stationary points
are always characterized by negativeR2′′ frequencies corre-
sponding to a saddle point of the ground-state potential curve
(negative force constant; see Figure 5b). The magnitudes of the
negativeR2′′ energies decrease more distinctly than the other
vibrational energies when proceeding from N to Bi in the case
of the halides, indicating less distinct vibronic instabilities. The
reversed behavior in the case of the hydrides finds its explana-
tion by initial A1′-A2′′ separationsδ, which increase consider-
ably in the sequence from Bi to N (Table 1) and hence weaken

TABLE 2: Proton Affinities (eV) for AX 3 Molecules before
(Ea

o) and after Relaxation into the Final Geometry (Ea), and
Available Experimental Energies (Ea

exp)a

Ea
o Ea Ea

exp ∆R ∆R ∆s %p (%s)

NH3 -9.0 -9.1 -9.0 0.01 3.8 -0.9 80(10)
PH3 -7.5 -8.1 -8.2 -0.02 17.2 -1.9 63(19)
AsH3 -7.1 -7.8 -7.8 -0.04 18.7 -2.2 60(16)
SbH3 -7.1 -7.8 -0.05 20.5 -2.1 54(18)
BiH3 -6.3 -7.1 -0.07 22.5 -2.7 49(11)
NF3 -5.5 -6.0 -6.3 -0.06 7.1 -3.9 26(19)
PF3 -5.6 -6.5 -7.2 -0.09 11.1 -1.4 23(38)
AsF3 -4.4 -5.0 -0.08 10.4 -1.3 16(30)
SbF3 -4.2 -4.8 -0.07 11.6 -1.4 14(26)
BiF3 -3.2 -3.5 -0.06 9.2 -0.8 6(12)

a The corresponding angular (∆R in degrees) and radial changes (∆R
in Å) are also listed.∆s () δEa1′ or δEa2′′ (in eV) see Table 1) is the
HOMO stabilization during theD3hfC3V transition of the AX3

molecules and %p (%s) gives the percentage of metal pz(s) character
in the HOMO in theC3V geometry.

AX3 + H+ f AX3H
+ (X:F,H)
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the vibronic interactions. In contrast, TlX3 (X)F,Cl,Br,I)
molecules are stable inD3h, as expected.

In some cases, in particular for PF3 and AsF3, negative values
are calculated for the predominantly angularε′ vibration inD3h

also. Indeed, a second type of PJT distortion may occur inD3h,
which couples the 6a1′(6s) with the 7e′(6px,y) MO via the two
ε′ vibrational modes, leading to an in-plane C2v distortion.
Because the lowest-energy empty e′ MO is much higher in
energy than the a2′′ or a1′ LUMO (Figures 2, 3, 4) and the
respective coupling constant rather small, this interaction is not
however, of steric relevance (for a more thorough discussion
of this effect, see ref 6b). This is evidenced by the energies of
theε modes inC3V which are all positive. It should be mentioned
further that a positive vibrational energy is calculated in all cases
for the R2′′ mode in the excited A2′′ state inD3h (not listed in

Table 4). Accordingly, geometry optimizations of the first
excited state, starting from theC3V geometry, usually relax to
the D3h molecular structure. However, the hydrides from PH3

to BiH3, as well as NF3 and PF3, exhibit negative values for
the angularε′ mode inD3h; in these cases the planarC2V structure
is the stable excited-state geometry. This finding might lead to
interesting effects in spectroscopy, producing increased Stokes’
shifts between absorption and emission bands.28 We neglect this
finer effect in the following.

IV. Which Bonding Parameters Determine the Energetic
and Geometric Changes along theD3hfC3W Distortion
Pathway?

We will demonstrate in this section that a vibronic coupling
model, in an effective sense, is able to rationalize and

TABLE 3: Calculated Energies [δEt, δEP, δEel, δEorb and Its Components from the a1(a1′,a2′′) and e(e′,e′′) MOs, δ - (A2′′-A1′)
Separation, in eV] and Geometrical Parameters (Bond LengthsR in Å and Angles r in degrees, experimental valuesa in
parenthesis) for Molecules MX3 (MIII : N to Bi and Tl; X -: Cl, Br,I) b

δEt δEP δEel δEorb δEorb(a1) δEorb(e) δ R(D3h) R(C3V) R(C3V) q(D3h) q(C3V) δEa2′′(%M) δEa1′(%M)

NCl3 -1.02 -14.89 4.34 9.53 0.65 8.83 1.07c 1.70 1.81(1.76) 107.4(107.3)-0.27 -0.18 -1.9(47)c -0.4(17)
PCl3 -1.86 9.73 -3.72 -7.87 -6.60 -1.31 0.93 2.22 2.10(2.05) 101.0(100.1) 0.27 0.07 3.0(64)-0.8(18)
AsCl3 -1.41 6.94 -2.80 -5.56 -5.37 -0.22 1.40 2.31 2.22(2.16) 100.4(98.9) 0.57 0.42 2.6(66)-0.7(13)
SbCl3 -1.30 5.91 -2.47 -4.74 -4.86 0.10 1.53 2.48 2.40(2.33) 99.4(97.2) 1.07 1.04 2.6(71)-0.6(16)
BiCl3 -0.90 3.90 -1.71 -3.09 -4.18 1.05 2.01 2.55 2.48(2.42) 97.3(97.3) 1.14 1.07 2.2(72)-0.4(8)
TlCl3 2.40 120 0.90 (91) (44)
NBr3 -1.09 -11.28 3.67 6.53 0.00 6.47 0.41c 1.87 1.98 108.1 -0.37 -0.22 -1.7(48)c 0.1(13)
PBr3 -1.46 7.22 -3.03 -5.66 -4.89 -0.81 0.83 2.38 2.28(2.22) 102.2(101.0) 0.41 0.21 2.2(60)-0.7(13)
AsBr3 -1.14 5.22 -2.31 -4.05 -4.11 0.02 1.22 2.47 2.39(2.33) 101.7(99.9) 0.67 0.53 2.0(62)-0.5(10)
SbBr3 -1.10 4.89 -2.22 -3.77 -3.96 0.16 1.34 2.64 2.55(2.49) 100.6(98.2) 1.11 1.11 2.1(67)-0.5(12)
BiBr3 -0.80 3.20 -1.54 -2.46 -3.59 1.07 1.77 2.69 2.63(2.63) 98.0(100.0) 1.15 1.10 1.9(69)-0.3(6)
TlBr3 2.55 120 0.93 (88) (37)
NI3 -0.70 -0.47 -0.03 -0.20 -1.40 1.18 c 2.16 2.17 110.9 -0.86 -0.80 -0.8(43)c 0.2(6)
PI3 -1.16 5.72 -2.59 -4.30 -3.69 -0.65 0.64 2.60 2.50(2.46) 103.4(102) -0.04 -0.36 1.6(55) -0.6(8)
AsI3 -0.92 4.30 -2.05 -3.17 -3.22 0.02 0.97 2.68 2.60(2.56) 102.7(100.2) 0.12-0.15 1.4(58) -0.5(6)
SbI3 -0.83 3.87 -1.89 -2.82 -2.95 0.12 1.07 2.87 2.79(2.72) 102.8(99.0) 0.55 0.43 1.4(61)-0.4(7)
BiI 3 -0.62 2.28 -1.21 -1.69 -2.81 1.08 1.41 2.92 2.87(2.81) 99.4(99.5) 0.67 0.59 1.3(62)-0.2(3)
TlI 3 2.76 120 0.37 (91) (28)

a Experimental values of R andR are taken from ref 6 and the references therein.b The effective chargesq of MIII , the energy changesδEa2′′,
δEa1′ of the HOMOs and LUMOs during theD3hfC3V transition and the metal ns and npz contributions to the HOMOs and LUMOs (in % electron
density, in parentheses) are also listed.c A1′(a2′′2) and A2′′(a2′′1a1′1) ground states for NCl3, NBr3, and NI3, respectively (see text).

TABLE 4: Calculated Vibrational Energies (in cm-1, DFT, spin-restricted calculations) for AX3 Molecules (A)N,P,As,Sb,Bia
and X)H,F,Cl,Br,I) in Their Ground State Configuration and Experimental Values a (calculated values for TlX3 compounds also
listed)b

H F Cl Br I

νD3h(C3V) D3h C3V exp. D3h C3V exp. D3h C3V exp. D3h C3V exp. D3h C3V exp.

N R1′(R1) 3545 3377 3337 782 997 1032 448 565 540 268 469 c 358
ε′(ε) 1513 1628 1628 410 446 493 250 224 258 146 131 c 85
ε′(ε) 3752 3497 3414 1235 810 908 833 536 643 709 475 c 408
R2′′(R1) -799 1040 950 -1113 598 647 -518 316 349 -501 190 c 131

P R1′(R1) 2486 2285 2321 540 805 892 320 481 512 196 369 390 131 278 303
ε′(ε) 965 1072 1121 -174 294 347 -54 163 187 -20 98 113 21 62 79
ε′(ε) 2580 2310 2248 610 772 860 392 466 505 334 373 384 278 298 325
R2′′(R1) -1043 984 991 -478 413 488 -335 227 260 -278 142 160 -214 93 111

As R1′(R1) 2344 2083 2122 549 678 741 317 389 424 194 272 290 128 195 218
ε′(ε) 899 990 1005 -93 229 262 12 132 153 20 82 93 17 54 67
ε′(ε) 2415 2105 2185 525 641 702 318 361 398 249 266 284 197 205 222
R2′′(R1) -1130 915 906 -313 296 336 -206 169 194 -159 112 125 -121 77 92

Sb R1′(R1) 2092 1873 1891 523 612 654 300 354 381 184 241 256 118 164
ε′(ε) 707 818 831 -31 174 -22 114 122 -9 70 76 17 47 55
ε′(ε) 2162 1903 1894 512 593 624 294 327 359 217 226 249 164 162 194
R2′′(R1) -1052 778 782 -227 216 259 -173 143 151 -133 94 101 -96 66 74

Bi R1′(R1) 1900 1742 1760 506 568 297 331 342 184 218 220 120 146
ε′(ε) 617 777 750 66 158 -47 97 107 13 62 63 23 41 47
ε′(ε) 1993 1749 1770 484 538 293 305 332 200 206 214 146 145 164
R2′′(R1) -1666 767 720 -192 180 -131 113 123 -90 76 77 -70 54 60

a Experimental vibrational frequencies are taken from Ref.[6] and cited references;b The calculatedR1′, ε′, ε′, R2′′ (D3h) vibrational energies for
TlF3, TlCl3, TlBr3 and TlI3 are 517, 72, 524,129 cm-1; 296, 69, 320, 84 cm-1; 180, 46, 219, 63 cm-1; and 111, 35, 154, 63 cm-1 respectively;
c A2′′(a1′1a2′′1) ground state.
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systematize calculational and experimental results, which are
sometimes contradictory at the first sight. Considerations on
the basis of such concept yield a simple and clear dependence
of the geometric and energetic changes during theD3hfC3V
transition on certain effective vibronic coupling parameters and
force constants.

1. The Vibronic Coupling Model for MX 3 Molecules.The
DFT calculations have shown, that the angular changes char-
acterizing theD3h to C3V transition of AX3 molecules are always
accompanied by significant changes of the A-X bond lengths.
This means that the vibronic treatment has to include the
coupling to the totally symmetricR1′ mode [A1′X(R1′ +
R2′′)XA2′′ interaction] and that matrix (1) has to be extended
accordingly [eqs 5].

The parameters for the angular and bond length (radial)
distortionsτR andτr, corresponding to theR2′′ and the totally
symmetricR1′ vibration, respectively, are defined by eq 6a; here
θ (in degrees) or 180° - θ is the angle between the A-X bond
vectors and the normal to the X3-plane and connected with the
XAX bond angleR by relation (6b).

τr
o is the radial displacement inD3h of the excited-state potential

curve with respect to that of the ground state.Kr,KR andKr′,KR′
are the force constants in the ground and the excited state.tR is
the first-order vibronic coupling constant responsible for the
D3hfC3V symmetry break andtRr a second-order coupling
parameter; the latter together with the displacive terms connected
with Kr, Kr′ and τr allows for the energy changes as the
consequence of the metal-ligand bond expansion or contraction,
which accompanies the displacement along theR2′′ distortion
path. E- and E+ are the solutions of determinant eq 5a, and
EFC [eq 5b], when calculated at the ground-state equilibrium
geometry inC3V (EFC

m) [eq 8b], is the Franck-Condon transition
energy and corresponds roughly to the maximum of the lowest
electronic absorption band in spectroscopic experiments.28

Equations 7 give two useful simplified relations for the ground-
state energyE- in the case of small nondiagonal energies, which
can be readily compared with the expression in eq 2b.

Figure 5a displays projections of the final ground-state A1(E-)
and excited-state A1(E+) potential surfaces onto theE - τr plane
(full curves), the angular coordinate corresponding to the
minimum positionτR

m in C3V [see eq 8b]; the A1′(Eg) and A2′′-
(Ee) potential curves (hatched) are those atτR ) 0 (D3h). The
former two curves drawn forτR ) 0 are identical with those of
A1′(Eg) and A2′′(Ee), because the vibronic coupling introduced
by the nondiagonal termtRrτRτr in eqs 5 will change the force

Figure 5. (a) Ground state and excited state potential curves A1(E-), A1(E+), DFT optimized in theC3V geometry and projected onto theE-τr

plane atτR
m (full lines). Projections atτR ) 0 (D3h) of the same curves [A1′(Eg), A2′′(Ee), hatched lines] are also shown. The energy separationsδo,

δ, EFC
m, and the restoring energyErf

m, as well as the optimizedτr
o andτr

m displacements with respect to the A1′(Eg) minimum position (τr ) 0),
which is the reference (E ) 0) for the energy scale, are also marked [eqs 5, 7, 8)]. (b) The angular dependencies of the A1′(Eg) and A2′′(Ee) potential
surfaces atτr ) 0 (hypothetical, see text; hatched curves) and of the final A1(E-) and A1(E+) states atτr ) τr

m (compare with Figure 1). The given
numerical values are those for BiH3.

A1(A1′) A1(A2′′)

[Eg-E N

N Ee-E ] (5a)

Eg ) (1/2)Krτr
2 + (1/2)KRτR

2 (5b)

Ee ) (1/2)Kr′(τr - τr
o)2 + (1/2)KR′τR

2 + δo

δEg,e≡ Ee - Eg ) (1/2)(Kr′ - Kr)τr
2 + (1/2)(KR′ - KR)τR

2

- Kr′τr
oτr + δ with δ ≡ δo + (1/2)Kr′τr

o2

N ) tRτR + tRrτrτR

E( ) (1/2){Eg + Ee ( [δEg,e
2 + 4N2]1/2}

EFC ≡ E+ - E- ) [δEg,e
2 + 4N2]1/2

τr ) x3 [R(C3V) - R(D3h)] (6a)

τR ) x3 R(D3h)[θ (C3V) - θ (D3h)](π/180)

sin θ ) (2/x3) sin(R/2) (6b)

N2 , δEg,e
2/4 E- = Eg -N2/δEg,e, and

with τr ) 0, KR ) KR′: (7a)

(tRτR)2 , δ2/4 E- = (1/2)KR
vibτR

2

(KR
vib t KR - 2tR

2/δ) (7b)
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constantsKr andKr′ only along theτR coordinate. In Figure 5b,
the angular dependence of the A1′(Eg) and A2′′(Ee) potential
curves atτr ) 0 is shown (hatched curves), having in mind that
the corresponding force constantsKR (>0) and KR′(<0) are
hypothetical. They are strongly modified by the vibronic
coupling along theR2′′ displacement path, and it is explicitly
the cross-termN in eq 5b that inducesKR′ to become positive
and KR negative in the final A1(E-) and A1(E+) states,
respectively (full curves). This is nicely illustrated by eqs 7,
valid in the vicinity of theD3h geometry [τR

2 , (δ/2tR)2], where
a negative force constant results for 2tR2/δ > KR.

The minimization ofE- [eq 5b] with respect toτR and τr

leads to the general defining energy expression (8a).

Here,Erf
m stands for the energy connected with the restoring

force and will be defined below. In the case that (δEg,e
m/2)2 is

vanishingly small compared to (Nm)2 in [eq 5b], and we will
see that this condition is satisfied for nearly all considered
molecules at theC3V minima of the ground-state potential surface
with not only large R2′′ (τR

m) but also R1′ (τr
m) nuclear

displacements, simple solutions result, implying the following
energies and geometrical parameters:

With the even more restrictive condition|δEg,e
m|/2 , Nm, the

relations (8c) would be additionally valid.

The equations 8b,c closely resemble those of eq 3, derived
without taking the radial parameterτr into account (τr ) 0) and
with the same simplification, the factorâ allowing for the
R-dependence. Figures 5 and 6 define the notations used in eqs
5 and 8, such asEg, Ee, δEg,e, E-, E+, EFC, δ, δo, Erf, τr

o, τr,
and τR, the superscript (m) denoting the values at the DFT
optimizedC3V geometries.

The energy diagram in Figure 6 illustrates the various steps
of the vibronic coupling approach according to eq 8a. The
transition fromD3h to C3V

+ implies the energy alterations without
taking the nondiagonal term due to the vibronic interaction
between A1(A1′) and A1(A2′′) into account (Nm ) 0). The
restoring force energyErf

m is the shift of the center-of-gravity
of the A1′ and A2′′ terms inD3h to that of the two A1 states in
C3V and represents the energy contribution to the totalD3hfC3V
stabilization energy, which is caused exclusively by the nuclear
motions (the nonvibronic part of the interaction).

We now face a situation where we have four unknown
parameters,tR, tRr, KR, KR′, while there is the same number of
energetic and geometrical parameters available from the DFT
calculations, namelyE-

m ) δEt, EFC
m, τr

m, τR
m [eqs 5, 8]. The

force constantsKr, Kr′ (and hence also the radial factorâ) as
well as the energy differenceδ between the A2′′(Ee) and
A1′(Eg) potential curves atτr ) 0 can be determined separately
by DFT.

Subsequently, we will analyze more closely how the DFT
energiesδEp, δEel, δEorb, δEorb(a1), δEorb(e) are related toδ,
δEg,e

m, EFC
m, Erf

m stemming from the vibronic model [eq 8b].
Inspecting eqs 5, 8 and Figures 5, 6, we note that the quantities
δ, δEg,e

m, EFC
m, and henceNm as well, correspond to vertical

Franck-Condon energies without a change in the geometry of
the considered molecule, whereasErf

m accounts for the energy
changes caused by nuclear displacements. In contrast,eachof
the DFT energies reflects the geometry change from planar to
pyramidal. However, our DFT calculations show that the
mentioned vertical energies depend exclusively onδEorb, this
meaning thatErf

m comprises the complete electrostatic (δEel)
and exchange repulsion (δEP) contributions to the total energy
change δEt (Tables 1, 3) as well as part ofδEorb. The
nondiagonal elementNm equals that part ofδEorb(a1) which
solely reflects the stabilization by the vibronic coupling [eq 9].

Its magnitude isindependent of the chosen reference(atomic
or ionic fragments). Thus,δEorb(a1) comprisesNm, but strongly
contributes particularly toErf

m also. Choosing BiCl3 as an
example (Table 3), whereNm = EFC

m (δEg,e
m = 0), one finds

that δEorb(a1) participates inErf
m, Nm, and δ/2 with -2.88,

-2.30, and+1.00 eV, respectively. We further note that
δEorb

vib(a1) is predominantly of angular origin, the radial
participation being rather small (1.0e â e 1.1, see Table 6).
δEorb(e) is nearly completely part ofErf

m. We conclude that the
relations between the energy expressions of the vibronic model
and the DFT energies are rather complex, the equality (eq 9)
forming the invariant bridge.

The calculated energiesNm andEFC
m/2 in Table 5 are, with

the exceptions PBr3, NCl3, NBr3, and in particular NH3- in
the latter case the A1′-A2′′ separation energyδ is the largest
of all investigated molecules- mostly identical or deviate from
each other by less than 10%. This indicates only small values
of (1/4)(δEg,e

m)2 in comparison to (Nm)2 and signals close

Figure 6. Energy diagram illustrating the steps underlying the vibronic
process (see text).C3V

+ shows the state energies without taking the
nondiagonal elementNm into account. The numerical values are those
of BiH3; hereErf

m andδEg,e
m are of negative sign.

Nm ) δEorb
vib(a1) (9)

E-
m ) Erf

m - (1/2)(EFC
m - δ), with

Erf
m t (1/2)(Eg

m + Ee
m - δ) (8a)

EFC
m ) [(δEg,e

m)2 + 4(Nm)2]1/2

(δEg,e
m/2)2, (Nm)2

τR
m = âtR/KR (with â t KR/KR

r andKR
r ) KR - tRr

2/Kr)

τr
m = (tRr/Kr) τR

m (8b)

(1/2)EFC
m = Nm = âtRτR

m

|δEg,e
m|/2 , Nm E-

m ≈ -(1/2)tRτR
m (8c)

Erf
m ≈ (1/2)tRτR

m (2â - 1)
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agreement with eq 8b. The comparison ofNm with the listed
total energies|δEt| in Tables 1 and 3 shows that the latter
quantity is mostly much smaller than the former one. This
implies that the sum ofδEP, which reflects approximately the
steric repulsion contribution due to the angular and radial
changes along the (R2′′ + R1′) pathway, ofδEel, and of the
orbital [δEorb - δEorb

vib(a1)] energy, the latter resulting from
the electronic rearrangements during theD3hfC3V transition
solely without the vibronic energy [eq 9], are nearly always
positive. Only in the cases of NBr3 and PBr3 is this sum, which
corresponds to (Erfm+δ/2) [eq 8a], slightly negative, with-0.3
and-0.1 eV respectively, thus supporting the vibronic stabiliza-
tion effect.We note as an important conclusion, that theVibronic
interaction is the energetically deciding quantity for the
symmetry break from D3h to C3V. We further find that for most
of the molecules with A1′(a1′)2 ground states, the major
contribution toNm stems from the lone pair stabilization 2δER1′
due to the vibronic HOMO-LUMO interaction. In the case of
the molecules with A1′(a2′′2) ground states (exception NH3), the
lone pair stabilization energy 2δER2′′ is even much larger than
Nm (see Tables 1 and 3).

Figure 7 shows a plot of|E-
m - δ/2| versus (1/2)EFC

m(=Nm).
Here the deviations from the straight line perpendicular to the
|E-

m - δ/2| axis indicate the magnitude of the restoring force
contributionErf

m according to eq 8a. They are positive in most
cases and rather small (|Erf

m| e 0.4 eV), but adopt particularly
large positive values for the fluorides with A1′(a1′)2 ground states
(see section IV.2).

We have considered in our vibronic approach only the
interaction between the A1′ ground state with the first excited
A2′′ state, without including further excited states of A2′′
symmetry. However, because the DFT energies comprise all

possible interactions, the calculated coupling and force constants
have to be considered as effective parameters, which represent
in a not always obvious way all couplings. To gain some insight
as to how significant the influence of higher excited states is,
separate calculations were performed in the neighborhood of
the D3h stationary points, where the conditionN2 , (δEg,e/2)2

is satisfied; here eq 7b is approximately valid and can be applied
in the form of eq 7c,10b where a summation over the interaction
with n excited A2′′ states occurs.

As is outlined in the appendix, in most cases the contribution
from the coupling of the A1′ ground state with the lowest excited
state A2′′ [i ) 1] dominates by far the magnitude of∆KR

vib

with at least 75%, approaching 100% in the case of the hydrides
where only one excited A2′′ state is available. Exceptions are
PF3 and NF3 with 66% and 54%, respectively, the extreme being
NCl3 with only 27%. In the latter case the second possible
interaction contributes 73%; due to a much larger coupling
constanttR(2)′, the influence of the also largeδ(2) separation
energy is overcompensated. Keeping these exceptions in mind,
we may well consider the effective vibronic coupling and force
constants, calculated in the two-state vibronic model (Table 5),
as representative parameters for the description and parametriza-
tion of the D3hfC3V symmetry change. We further note that
the coupling constants in eq 7c are different from those (tR)
used throughout this contribution (see appendix).

2. The Parametrization and Interpretation of the Vibronic
Coupling Effect. According to the described procedure, we have
calculated the force constantsKr, Kr′ and KR, KR′ as well as the
vibronic coupling constantstR and tRr by exactlysolving the
system of nonlinear equations forτR

m, τr
m, E-

m, and EFC
m,

resulting from eqs 5. We may regardâtR (see the approximate
expression forNm in eq 8b) as the vibronic coupling constant,
which represents the angular (tR) and the radial (by the factor
â) driving potential for theD3hfC3V transition. However, as
has been discussed above in detail, this coupling constant images
only that part of the process dealing with the orbital interaction
between the a1′ and a2′′ MOs, which is induced by the symmetry
break, leaving aside all other involved electronic energies. In
Table 5 we have listed the stabilization energies (âtR)2/KR, which
should equalNm and (1/2)EFC

m in the case of very small values
for δEg,e

m [eq 8b]. Indeed, these values mostly agree with each

TABLE 5: Vibronic Coupling ( Nm, (âtr)2/Kr) and
Franck-Condon (EFC

m/2) Energies for Molecules AX3 in the
C3W Geometry (in eV), as Defined in the Texta

H F Cl Br I

Nm 2.39 3.53 1.22 0.81
EFC

m/2 3.71 3.83 1.42 1.07 0.76
N (âtR)2/KR 4.67 4.05 1.07 0.82

ηC3V(ηD3h) 6.35(6.01) 8.31(5.26) 4.53(3.79) 3.85(3.11) 3.14(2.55)
øC3V(øD3h) 5.32(4.66) 5.72(5.22) 6.00(5.03) 6.00(5.26) 5.72(5.60)

Nm 3.59 4.49 2.22 1.34 1.21
EFC

m/2 3.60 4.53 2.40 1.50 1.31
P (âtR)2/KR 3.71 4.36 1.89 1.49 1.18

ηC3V(ηD3h) 5.74(4.95) 7.69(4.71) 5.27(3.31) 4.50(2.99) 3.74(2.61)
øC3V(øD3h) 5.19(3.85) 5.17(6.45) 5.17(6.18) 5.26(5.98) 5.23(5.69)

Nm 3.47 4.13 2.29 1.86 1.28
EFC

m/2 3.47 4.13 2.32 1.89 1.31
As (âtR)2/KR 3.50 3.96 2.13 1.76 1.22

ηC3v(ηD3h) 5.80(4.65) 7.56(4.74) 5.11(3.45) 4.40(3.12) 3.71(2.72)
øC3V(øD3h) 4.99(3.79) 5.44(6.84) 5.50(6.42) 5.47(6.15) 5.36(5.84)

Nm 3.08 3.60 2.49 2.08 1.45
EFC

m/2 3.23 3.64 2.50 2.08 1.45
Sb (âtR)2/KR 2.90 4.29 2.38 1.99 1.41

ηC3V(ηD3h) 5.31(4.21) 6.83(4.38) 5.01(3.39) 4.39(3.08) 3.65(2.70)
øC3V(øD3h) 4.70(3.74) 5.57(6.57) 5.42(6.37) 5.32(6.08) 5.41(5.93)

Nm 2.90 3.37 2.29 1.96 1.39
EFC

m/2 3.12 3.41 2.30 1.96 1.39
Bi (âtR)2/KR 3.20 3.44 2.30 1.98 1.32

ηC3V(ηD3h) 5.52(3.50) 6.46(4.67) 4.83(3.56) 4.30(3.24) 3.64(2.84)
øC3V(øD3h) 4.84(4.10) 6.10(7.07) 5.83(6.60) 5.56(6.26) 5.54(6.06)

aThe molecular hardnessη and the electronegativityø (in eV), for
theC3V andD3h symmetry, as derived from DFT calculations, are also
listed. η andø values for the following initial atomic fragments are:
η(ø); H: 5.43(7.10); F:7.83(11.89); Cl:5.04(8.87); Br:4.47(8.15);
I:3.85(7.31) and N: 6.06(7.67); P:3.93(5.82); As:3.71(5.50);
Sb:3.27(5.07); Bi:3.18(4.88).

Figure 7. Energy plot of|E-
m - δ/2| versus (1/2)EFC

m according to
eq 8a. The straight line indicates vanishingErf

m values, whereas marks
above and below the line point toErf

m energies<0 and>0, respectively.

KR
tot ≡ KR + ∆KR

vib = KR - 2Σ(i)t′R(i)
2/δ(i) (i ) 1-n) (7c)
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other quite satisfactorily. The most striking exception is NH3,
for which molecule a vibronic coupling energy (2.4 eV) is
derived being only half of that in magnitude (4.7 eV), which
would be expected in the case of smallδ (andδEg,e

m) separation
energies (Table 1). The vibronic coupling parameterâtR and
ground-state force contantKR calculated for this molecule (Table
6) are in reasonable agreement with the results of an ab initio
calculation.25

We will show now that the Franck-Condon energies (1/2)-
EFC

m (equaling in most cases the vibronic coupling energyNm

= (âtR)2/KR) and δ/2 are correlated with the hardnessη(C3V)
and η(D3h) of the molecules, respectively. The hardness is
defined as the difference between the ionization energy (I) and
the electron affinity (A) according to eq 4c and available from
the DFT calculations. The indicated correlation should hold,
because the energy differenceI - A roughly images the
transition energy A1(A1′)TA1(A2′′) or A1′TA2′′, when exciting
an electron from the HOMO to the LUMO [eq 10a].

The quantitiesη(C3V) andEFC/2 as well asη(D3h) andδ/2 differ
in an additional interelectronic repulsion contribution C, which
results when adding an electron to the LUMO (A) and removing
it from the HOMO (I) instead of regarding the real excitation
process.29 The term C is related toU [eq 4b];JHL andKHL are
the Coulomb and exchange integral respectively, whose differ-
ence should not vary too much in the series of investigated
molecules. This can indeed be deduced from Figure 8a, where
the interrelation betweenη(C3V) and EFC

m/2 [or Nm or (âtR)2/
KR] is indeed transparent. The gradient of the best-fit straight
line in the figure is very near to 1.0, which would be the
expected slope for constant C values in dependence on the kind
of AX3 molecule. If the hardness differenceδη is plotted versus
(1/2)(EFC

m - δ) [eq 10b], the energy contributions from
interelectronic repulsion C(C3V) and C(D3h) should largely
cancel. Figure 8b indeed illustrates that the remaining repulsion
term δC is small in most cases (e 0.15 eV), approaching 0.5
eV only for three out of 25 molecules.

We deduce from Table 5 and Figure 8a that the quantities
EFC

m/2 = Nm = (âtR)2/KR and η(C3V) Vary according to the

TABLE 6: Effective Vibronic Coupling Constants (âtr, in eV/Å), Vibronic Enhancement Factors Due toD3hfC3W A-X Bond
Length Changes (â), Angular Force Field Parameters (Kr in eV/Å2), and Angular Nuclear Displacement Factorsτr

m

(corresponding âtr/Kr values resulting from the vibronic model [eq 8b] are also listed) from DFT

H F Cl Br I

âtR(â) 3.49(1.04) 3.5(1.0)a 1.0(1.0)a 0.6(1.05)a

N KR 2.61 3.0a 0.9a 0.4a

τR
m(âtR/KR) 0.70(1.34) 1.08(1.15)a 1.13(1.1)a 1.19(1.4)a ≈0.5b

âtR(â) 2.55(1.00) 2.83(1.08) 1.09(1.13) 0.68(1.11) 0.63(1.05)
P KR 1.75 1.84 0.63 0.31 0.34

τR
m(âtR/KR) 1.42(1.46) 1.55(1.54) 1.81(1.73) 1.88(2.18) 1.85(1.87)

âtR(â) 2.25(1.00) 2.36(1.09) 1.15(1.07) 0.89(1.05) 0.65(1.04)
As KR 1.44 1.40 0.62 0.45 0.35

τR
m(âtR/KR) 1.55(1.56) 1.72(1.68) 1.92(1.85) 2.04(1.98) 1.92(1.86)

âtR(â) 1.88(1.00) 1.89(1.06) 1.05(1.06) 0.85(1.05) 0.60(1.02)
Sb KR 1.08 0.99 0.47 0.36 0.26

τR
m(âtR/KR) 1.74(1.74) 1.88(1.91) 2.31(2.26) 2.40(2.35) 2.38(2.34)

âtR(â) 1.52(1.00) 1.64(1.07) 0.99(1.06) 0.81(1.05) 0.58(1.00)
Bi KR 0.73 0.79 0.42 0.33 0.26

τR
m(âtR/KR) 1.95(2.10) 2.04(2.09) 2.30(2.33) 2.41(2.45) 2.32(2.27)

a Approximate values, because the two-state model is not valid here.b Very approximate value- A2′′(a1′1a2′′1) ground state with close-lying
HOMO and LUMO.

Figure 8. (a) Energy plot of the hardnessη(C3V) versus (1/2)EFC
m for

AX3 molecules, from DFT calculations in theirC3V ground state
geometries. The straight line is a least-squares fit, excluding the NX3

molecules, according toηC3v ) 2.14 + 1.17 EFC
m/2. (b) Plot of the

hardness differenceδη ) η(C3V) - η(D3h) versus the transition energy
difference inC3V[A1(A2′′)fA1(A1′)] and D3h(A2′′fA1′) ∆E ) (1/2)-
(EFC

m - δ). The best fit line obeys the equationδη ) 0.15+ 0.82∆E,
and the hatched line indicates the equality ofδη and∆E for vanishing
interelectronic repulsion contributionsδC [eq 10b].

η(C3V) = (1/2)EFC
m + C(C3V), η(D3h) = δ/2 + C(D3h),

with C ) (1/2) (JHL - 2KHL) (10a)

δη ) η(C3V) - η(D3h) ) (1/2)(EFC
m - δ) + δC (10b)
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following sequence of X atoms(with a deviation in the NH3
case):

The trend (11) is the same for each A atom, though the gradation
gets smaller proceeding from N via P to As, Sb, Bi. The
dependence on A is only small (for X)H,F) (11a) or not present.
Both series also reflect how the atomic hardness (Table 5) varies
with X.

The hardness values for theD3h molecular geometry (Table
5) are always smaller thanη(C3V). This observation is closely
related to what was originally claimed to be a general principle,
first formulated by Pearson30 and later illustrated by Datta for
NH3.31 It states that the hardness is minimum at the transition
state (here the planar geometry) and reaches the maximum at
the energy minimum of the potential curve (C3V geometry; see
Figure 5b), on condition that the chemical potentialµ does not
change during the process. It has been shown though, that the
given proof32 is in error.33 Our own results indeed do not give
any indication that the maximum hardness principle is valid in
the cited form, and we will discuss this item in some detail
below. However, onealwaysobserves anincreaseof η, when
proceding from theD3h to the optimizedC3V geometry (see
Figure 10). The reason is obvious, because a stabilization of
the A1′ ground state and a destabilization of the excited A2′′
states occurs via the vibronic coupling, thus enhancing the
Franck-Condon energy fromδ to EFC

m andη(D3h) to η(C3V)
[eq 10b]. Again this mostly considerable energy effect is only
small for NH3 because of the large initialδ value.

The correlation between the vibronic coupling energy and
the total energy change during theD3hfC3V transition is rather
complex. The equality of|δEt| ) |E-

m| with (1/2)âtR2/KR,
suggested by eq 8c, does not hold for the larger part of the
AX3 molecules, because the more severe critical condition
|δEg,e

m|/2 , Nm is not met in these cases. The largest deviations
from the simple relationship are observed for NH3 and NF3,
where the energies|Eg,e

m|/2 (Nm) adopt values of 2.8 (2.4) and
1.5 (3.5) eV, respectively. In difference,EFC

m approximately
equalsNm and (âtR)2/KR, as considered above [Table 5, eq 8b].

In what follows, we derive relations between the changes of
η and of the chemical potentialµ during theD3hfC3V transition
and quantities such asδEt

m, EFC
m, δ, andErf

m. Going back to
the definitions ofµ (or the electronegativityø) and the hardness
[eq 4c], we readily obtain eq 12a with a useful correlation
betweenη, µ, and the total energyEt

m.

HereEt
m(+1) andδEt

m(+1) denote the total energy of the singly
ionized molecules (AX3)+ and its change during theD3hfC3v

transition, calculated for the unrelaxed geometries with respect
to (AX3)o. We may then compare the expression forδEt

m with
that obtained earlier,δEt

m ) Erf
m - (1/2)(EFC

m - δ) [eq 8a].
Having in mind thatδη approximately equals (1/2)(EFC

m - δ)
[eq 10b], one deduces eq 12b,δC being a rather small quantity.

We conclude that the hardness principle is obviously restricted
by certain properties ofErf rather than ofµ, at least if
vibronically induced symmetry changes of molecules or struc-
tural fragments are considered. Explicitly, the hardness can only
be maximal at the minimumE-

m if the relation (dErf′/dP) ) 0
at Pm holds, wherePm is the distortion coordinate due to the
angular (θ) and radial (R)D3hfC3V changes [eqs 6] at the energy
minimum δEt ) E-

m.
Erf

m′ is imaged byδµ only vaguely, becauseδEt
m(+1) is of

comparable magnitude. The latter energy is positive for
A1′(a2′′ 2) ground states and opposesδµ (<0), which supports
the vibronic stabilization in these cases (Table 5). A reverse
situation arises for A1′(a1′2) ground states [δµ > 0; δEt

m(+1)
< 0]. Accordingly theδµ versusErf

m plot, which we show in
Figure 9, discriminates between the two alternative ground
states. While a reasonable correlation exists for the “s2” type
molecules in the upper part of the figure, withδEt

m(+1)
contributions as negative as≈ -1 eV, the “p2” type compounds
appear in the lower left segment, withδEt

m(+1) approaching
values up to 0.8 eV. For the molecules studied in this
contribution,Erf

m [eq 12b] adopts energies between about 1.4
and-0.4 eV, whereasδη possesses values in the range between
0.4 and 3.1 eV (Table 5). Correspondingly, a behavior more
complex than predicted by the hardness principle is expected.
Indeed, if one plotsδη versusδθ (with an optimization with
respect toR for each point as well), maximum hardness is either
achieved atθ > θm or δη has no maximum at all. This can be
taken from Figure10a,b which shows the angular variation of
δEt, δη, δµ, andErf

m′ for PH3 and SbF3. The dependencies for
the former molecule are characteristic for A1′(a2′′2) D3h ground
states, with an approximately parabolic increase ofδη and a
similar but even more pronounced increase ofErf

m′ after a
minimum atθ < θm. For molecules with an A1′(a1′2) ground
state inD3h, maximum hardnessδη might be achieved atθ >
θm. In the case of SbF3, for example,δη reaches the extremum
value atθ = θm+4°; hereErf′ possesses an inflection point with
a rather small gradient, which compensates the gradient ofδEt

at the same angle eq [12b].δµ is maximal atθm, without,
however, leading to an extremum ofδη at this angle, as
demanded by the old version of the hardness principle. Figure
10c depicts the situation for NH3 with a large initial splittingδ
(Table 1). Neverthelessδη, imaging the vibronic energy gain,
increases in a comparably pronounced way withδθ as for
PH3, but the restoring forceErf′ opposes this tendency very

Figure 9. Energy plot ofδµ ) µ(C3V) - µ(D3h) versusErf
m, with “s2”

and “p2” type AX3 compounds appearing in different segments of the
figure (see text).

AX3: F > H . Cl > Br > I (A:N,P,As,Sb,Bi) (11)

N > P > As > Sb> Bi (X:H,F) (11a)

η - µ ) I ) Et
m(+1) - Et

m or (12a)

Et
m ) Et

m(+1) + µ - η w δEt
m ) δEt

m(+1) + δµ - δη

δEt
m ) Erf

m - δη + δC ) Erf
m′ - δη

Erf
m′ ) δµ + δEt

m(+1) (12b)
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efficiently, shifting the energy minimumδEt
m to rather small

distortion angles. Our calculations do not give any indica-
tion for a maximum ofδη at δθm, as has been claimed
previously.31

We proceed by checking on which molecular properties the
variation of the vibronic coupling constantâtR (Table 6) with
the kind of A and X atoms depends, and we readily find that
the relations of eqs 11 and 11a, which are valid for the vibronic
coupling energy (âtR)2/KR (Table 5), hold also here. The factor
â, which accounts for the vibronic effect of the radial changes
due to the termtRrτr

m [see eqs 5b and 8b)], is generally larger
than or equal to unity (exception: NF3) and indicates that the
vibronic interaction energy is enhanced by the radial effect. The
latter is small, however, withâ possessing values around 1.00
for the hydrides and up to only 1.1 for the halides; the extreme
example is PCl3, where the radial compression enhances the
angular vibronic force by 13% (Table 6). We note here, that
the effective vibronic coupling constantâtR is a quantity that
comprises different contributions due to A-X, A-A, and X-X
interactions. Controversial opinions, as to which interaction is
the most significant (A-A, purely ionic34,35or A-X, covalent36)
occur in the literature. An analysis of the orbital vibronic
constanttRorb pertaining to the HOMO-LUMO vibronic mixing
indicates (see appendix) that this parameter is dominated by
A-X overlap terms, contributions due to A-A and X-X terms
being much smaller and negligible, respectively.

It is surpising at first sight thatτR
m, as obtained from the

DFT calculations and equivalent to the bond anglesR in Tables
1 and 3, displays a distinctly different dependence on A and X
than the vibronic coupling constantâtR. Explicitly, one observes
the following trend for the extent of distortion (Table 6) when
changing the ligand according to

and the metal according to

We have listed theâtR/KR values, which should equalτR
m in

the case of small or vanishing (1/2)δEg,e
m energies [eq 8b], in

Table 6 as well. They are generally in good agreement with
τR

m, with the exceptions of PBr3 and in particular NH3. The

reason for the deviating trends (eqs 13 and 13a) from those for
âtR (eqs 11 and 11a), which are approximately opposite, is
obviously the influence of the force constantKR, which controls
τR

m besides the vibronic coupling constantâtR. As one easily
deduces from Table 6,KR equally follows the dependencies (eqs
11 and 11a) except for hydrogen, but decreases more steeply
from H ≈ F to Cl, Br, I, and from N to Sb thanâtR does. Hence
the largest angular distortions result for Sb(Bi)Br3 with τR

m =
2.4 Å (R = 98°) and the smallest ones for NH3 (strongly reduced
in addition by a large initial splittingδ) and NF3 with τR

m =
0.7 Å (R = 106°) andτR

m = 1.1 Å (R = 102°), respectively.
We conclude that the observable quantityτR

m, which measures
the angular distortion of an AX3 molecule, is largest for entities
with “soft” constituents of low hardness values, such as BiIII ,
SbIII and I-, Br-, while smallτR

m values are characteristic for
the “harder” molecules. The vibronic coupling energy Nm =
(âtR)2/KR is less influenced byKR thanτR

m and still follows the
sequences of eqs 11 and 11a as discussed before, with a less
distinct gradation, however. We emphasize that the relations
of eqs 13 and 13a may not necessarily hold for other coordina-
tion numbers (subject of a subsequent study), because they
depend critically on the force constants of the AX3 molecules.
Thus, it is doubtful at present, whether these relations (eqs 13
and 13a) can serve as a general empirical series to predict lone
pair induced distortions.

V. Conclusions

Model DFT calculations on “lone pair” molecules AX3 (A:N
to Bi; X:H,F to I) show, in contrast to, for example, TlX3

compounds, a distinct steric effect, leading to aC3V distortion
of the parentD3h geometry along a distortion path according to
the (R1′ + R2′′) vibrations. As was demonstrated, the energetic
and steric changes can be parametrized successfully by a
vibronic coupling approach. The most significant results of this
contribution are listed in the following.

(1) An analysis that decomposes the total DFT binding
energies into steric, ionic, and orbital interaction terms indicates
that the driving force for theD3hfC3V transition, consisting of
radial (bond length alteration) and angular changes, is dominated
by the steric repulsion energy for “pz

2” type molecules (δEP),
but by orbital stabilizationδEorb in the case of molecules with
“s2” type ground states (Tables 1 and 3). The underlying reason

Figure 10. The dependence ofδEt, δη, δµ, andErf′ ) Erf + δC ) δµ + δEt(+1) on the angular distortionθ [eq 6b] for PH3 (a), SbF3 (b), and
NH3 (c), as obtained from DFT calculations. For each point, an optimization with respect to the radial parameterR has been performed.

τR
m: H < F < Cl j Br ≈ I [A:N to Bi] (13)

τR
m: N , P < As < Sbe Bi [X:H,F to I] (13a)
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is the distinct change of the A-X spacings during theD3hfC3V
transition, which increase in the former case due to the ns(A)
admixture to the HOMO, thus favoringδEP(<0) and leading
to weaker bonds (δEorb > 0). The reverse phenomenon occurs
for the “s2” type molecules, where a shrinking of the interatomic
distances occurs (δEP > 0; δEorb < 0).

(2) Separating the various contributions to the DFT energy
changes (δEt, δEP, δEel and δEorb) according to bond length
and angular alterations, it is found thatδEP (as well asδEel)
depends nearly exclusively on the radial distortion coordinate.
We conclude that the angular distortions induced by the “lone
pair” are caused by specific orbital effects rather than by other
forces: Apparently steric interactions or “interpair repulsions,”
as in the classical VSEPR model, do not play a significant
energetic role.

(3) The HOMO inD3h is of a1g′2(s2) type in most cases; here
the lone pair density is predominantly delocalized toward the
ligands (Figures 2 and 2a). In difference, in the cases of the
hydrogen compounds and the NX3 (X)F,Cl,Br) molecules, the
HOMO is of a2′′2(pz

2) nature and predominantly localized on
A, but adopts considerable ligand character by the vibronic
interaction (Figures 3, 3a and 4; Tables 1 and 3). NI3 is
presumably an intermediate case with an (a1′1a2′′1) HOMO.

(4) The interpretation of the DFT data using a simple vibronic
coupling model based on an effective two state approximation
[A1′(a1′2 or a2′′2) and A2′′(a1′1a2′′1)] yields a rather good
description for the considered molecules, except for the nitrogen
halogenides; here more remote excited states (NCl3) and near
degeneracy effects of the HOMO and the LUMO (NI3) are
significant. Deduced effective vibronic coupling parametersâtR
(â standing for the radial andtR for the angular orbital effect)
and force constantsKR [eqs 5 and 8 and Tables 5 and 6] allow
a parametrization of the observed steric and energetic changes
during theD3hfC3V transition.

It is obViously the Vibronic stabilization [≈ -(âtR)2/KR]
originating mainly from the interacting a1′(ns) and a2′′(npz) MOs
after the D3hfC3V symmetry break according to eqs 8 and 9,
with generally (âtR)2/KR g |δEt

m| (Tables 1, 3 and 5), that
goVerns the total energy gainδEt

m. The additional energy
contributions from the electronic rearrangements in the MOs
during theD3hfC3V transition overcompensate-(âtR)2/KR only
in the case of “pz2” type molecules, rendering positiveδEorb

values here (see under 1).
(5) The vibronic energy dominating theD3hfC3V transition

and represented by (âtR)2/KR (Table 5) is strongly correlated
with the hardness of the AX3 molecules (Figures 8a,b).Its effect
is due to the nondiagonal element in matrix (5a) and large for
the hard and small for the soft molecules, according to the
sequences of eqs 11a and b.The vibronic coupling constants
âtR themselves follow the same trend in an even more distinct
fashion (Table 6).

(6) In contrast, the angular distortionτR
m = âtR/KR (Table 6)

as a significant observable quantity for the chemist follows
nearly opposite sequences (eqs 13 and 13a) due to the strong
influence ofKR, which varies analogously toâtR in dependence
on A and X (eqs 11a,b), but with a more pronounced gradation.
The extent of the PJT distortion becomes more pronounced in
the here-considered case of AX3 molecules, the softer the AX3
molecule and its atomic constituents are.

(7) The total energy gainδEt
m in the course of theD3hfC3V

transition is the sum of two contributions (Figure 7). The first
of these is the “corrected” vibronic coupling energy (1/2)(EFC

m

- δ)[EFC
m = (âtR)2/KR], which approximately equals the

hardness differenceδη ) η(C3V) - η(D3h) (Figure 8b). The

second contribution isErf
m and represents the restoring force,

which reflects the electronic and nuclear rearangement energy
during the D3hfC3V transition without accounting for the
vibronic ground state-excited state interaction (Figure 6).We
find (see Figs 10) that the “hardness principle” (maximum
hardness at the optimized C3V geometry) is not restricted by a
constant chemical potential (µ) during the considered process
as preViously claimed, but by the condition (∂Erf/∂P)m≈0 (P:
distortion coordinate).

(8) The exceptional position of NH3 among the AX3
molecules, i.e., the unexpectedly small angular distortion and
the only tinyδEt

m stabilization energy, is caused mainly by the
very large initial A1′-A2′′ energy gapδ (Table 1). The vibronic
coupling model would otherwise suggest much largerτR

m and
|δEt

m| values than actually observed (Table 6).
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Appendix: Derivation of Orbital Vibronic Constants
[tr(i)′] and Their Analysis

Here we describe a general procedure for calculating vibronic
coupling parameterstR(i)′ in a one-electron picture [eq 7c] if
pairs of orbitals are intermixed by distortions, say fromD3h to
C3V geometry, via the operator (∂h/τR)o: tR(i)′ ) 〈æ(a1′)|(∂h/
τR)o|æ(a2′′)〉. Let us denote the matrices of eigenvectors (in
columns), eigenvalues and the overlap, written in the basis of
atomic wave functions, byV, Λ (diagonal), andS, respectively.
Calculations of higher quality require the use of extended basis
sets, approximating a given valence orbital in terms of two or
more Slater exponents. Following the general theory of effective
Hamiltonians,37 it is possible to reconstruct from these data a
matrix (Heff) in which a single function represents a given
valence orbital. Choosing as an example NF3 and a triple-ú basis
for N and F, the 19× 19 secular problem can be reduced to a
5 × 5 problem, involving three a1′ [2s(N), 2s(F), and 2px,y(F)]
and two a2′′ [2pz(N) and 2pz(F)] orbital functions. If we denote
by VS, ΛS(diagonal), andSS the submatrices ofV, Λ, andS,
which operate within the restricted valence orbital basis (5×
5) space,Heff is given by eq A.1 whereVT is the transpose of
the effective eigenvector matrixV as given in eq A.2. The
Löwdin orthogonalization [eq A.3] eliminates overlap due to
the nonorthogonality of the atomic basis functions, whereas eq
A.4 is the key step which leads to the effective eigenvectors in
the restricted orbital subspace, a procedure developed by des
Cloizeaux.38

In the considered case, namely vibronic coupling inducing a
D3h fC3V distortion,Heff is calculated for an arbitrary but small

Heff ) VΛSV
T (A.1)

V ) SL
-1/2V L (A.2)

VL ) SS
1/2VS (A.3)

SL ) VLVL
T (A.4)

DF Studies on the Lone Pair Effect J. Phys. Chem. A, Vol. 105, No. 22, 20015465



distortion angleθ [eq 6b with δθ ) 5°]. If we denote the
respective matricesHeff(C3V) and Heff(D3h), the Hamiltonian
∆Heff of eq A.5 results for the vibronic perturbation. The matrix
of the expectation values of∆Heff within the manifold of the
a1′ and a2′′ eigenfunctionsV(D3h) yields, after division byτR,
the matrix oftR(i)′ orbital vibronic coupling parametersVvib eq
A.6, which consists of vanishingly small diagonal and much
larger off-diagonal a1′ - a2′′ matrix elements.

In calculatingHeff(D3h) andV(D3h) use has been made of the
approximation that for smallτR values the eigenvector matrix
V(C3V) differs only slightly fromV(D3h). The renormalization
after setting the small a2′′(a1′) AO coefficients in the a1′(a2′′)
eigenvectors to zero, and vice versa, yieldsV(D3h) and Heff-
(D3h). Taking again NF3 as an example, the following values
of tR(i)′, δ(i), and of the corresponding contributions∆KR

vib
(i) )

-2tR′(i)2/δ(i) to the total force constantKR
tot [eq 7c] result for

the two possible a2′′-a1′ interactions:

The largerδ(2) separation energy between the lower lying 1a2′′
orbital and the LUMO is nearly compensated by the largertR(2)′
parameter in comparison to the HOMO-LUMO interaction,
yielding comparable contributions to∆KR

vib from the two terms.
The coupling constantstR(i)′ cannot be compared directly with
tR [eq 8b] for mainly two reasons: on one hand,tR is an effective
many-electron parameter representing all possible orbital inter-
actions and, on the other hand,tR is calculated atτR

m, in contrast
to the tR(i)′, which are derived at very smallτR distortions.
Calculated values for∆KR

vib, the sum over all∆KR(i) contribu-
tions, and for the total force constantKR

tot in D3h (in eV/ Å)
according to eq 7c are listed in eq A.8.

The percentage contribution of the HOMO-LUMO interaction
(i)1) to ∆KR

vib is also given (in parentheses). As stated before,
the latter interaction usually dominates∆KR

vib, the NX3

molecules (in particular NCl3) being exceptions.
We may use the HOMO-LUMO vibronic coupling param-

etertR(1)′ as a probe for analyzing the various contributions from
the A-A, A-X, and X-X interactions. Choosing, for example,
an a1′2 ground state, the HOMO (æg) and the LUMO (æe) are
represented by the MOs in eq A.9, with sA and pzA denoting
central atom orbitals and Xg and Xe symmetry adapted linear
combinations of ligand orbitals of a1′ and a2′′ symmetry,
respectively. The HOMO-LUMO coupling parameter can now

be specified as in eq A.10.

Here, the termtR′(A-A) is of purely electrostatic nature,
whereastR′(A-X) results from the A-X overlap.tR′(X-X) is
mainly due to ligand-ligand interaction and mostly rather small
or vanishing (γe ) 0: nonbondingpzA MOs). Calculated values
[eq A.11] indicate thattR(1)′ is generally dominated by A-X
overlap. The electrostatic termtR′(A - A) is either opposing or
supporting the overlap contribution, the absolute value being
always distinctly smaller thantR′(A - X) though. The high
covalency, particularly of NH3 and NF3, the compounds with
the hardest atomic fragments (Table 6), is striking; the also large
electrostatic terms apparently stabilize the planar geometry, thus
reducing the coupling constant considerably. The rather pro-
nouncedtR′(X - X) contribution of PI3 seems to indicate
stabilizing I- I overlap inC3V favored by the small ionic radii
ratio of P in comparison toI. It is surprising that thetR values
from Table 6 follow the same trend in dependence on the kind
of AX3 molecule as do thetR′(A-X) coupling constants in the
listing (A11).
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